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Abstract 

 
This paper presents a new method for combining finite elements with meshless methods, which increases the accu-

racy of computational solutions in a coarse mesh by adding nodes in the domain of interest. The present method shares 
the features of the finite element and meshless methods such as (a) the meshless interpolation of the MLS type is em-
ployed; (b) integration domains are consistent with support domains; and (c) essential boundary conditions can be ap-
plied directly. In the present method, a ground mesh with triangular or quadrilateral elements is constructed to define 
polygonal support domains, and then additional nodes are placed arbitrarily in a domain without the reconstruction of a 
mesh. The method is very useful in an adaptive calculation, because nodes can be easily added or removed without any 
remeshing process. 

 
Keywords: Adaptive computations; Finite element methods; Meshless methods; Moving least square 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

Meshing in the finite element method is one of the 
time-consuming works in the field of computational 
mechanics. The fundamental idea of meshless meth-
ods is quite promising for numerical simulations as 
alternative approaches which involve no mesh. Mesh-
less techniques are also appealing because of their 
potential in adaptive calculations, where one can add 
or remove nodes in a particular region to control the 
accuracy of results. Although a number of meshless 
methods [1-5] have been proposed over the last dec-
ade, these methods have some difficulties in con-
structing support and integration domains to preserve 
a regularity of shape functions and a consistency in 
numerical integrations of a weak form over the prob-
lem domain, because the determination of support 

regions associated with nodes irregularly distributed 
in a domain invokes a complexity of the so-called 
meshless connectivity [6] to build approximation 
functions. For non-uniform node distribution, in par-
ticular, a careful concern is required for multiple cov-
erings of support domains up to the order of basis. In 
addition, numerical integrations of a weak form in a 
domain essentially have to use subdivided regions 
such as a background mesh even though shape func-
tions are defined without the aid of a mesh. As a re-
sult, standard meshless methods need a connectivity 
to define support and integration domains. The choice 
of support and integration domains in meshless meth-
ods still remains open. 

Meshless methods have some difficulties in the de-
finition of support and integration domains consistent 
with the characteristics of shape functions. The first 
difficulty is related to the number of coverages of 
support domains for constructing shape functions. 
Some methods [7, 8] using the Delaunay tessellation 
have been proposed for the definition of influence 
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domains to develop meshless interpolants. The sec-
ond difficulty is related to the consistency of support 
and integration domains. The standard finite element 
methods use support and integration domains based 
on finite elements, and the shape functions of finite 
elements are easily well defined with polynomial 
functions to yield a consistent numerical integration. 
Most of the meshless methods, however, may not 
give accurate results for a problem with irregular 
node distributions, and should be revised support 
domains and background meshes for adaptive calcu-
lations by adding or removing nodes in a domain [9]. 

There have been several efforts to develop a me-
thod for combining salient features of finite element 
and meshless methods. Oden et al. [10] introduced a 
new hp-finite element method, by using a combina-
tion of the conventional FEM and the partition of 
unity, to achieve a different order of basis for each 
node. In this method, however, a new global mesh is 
needed to add nodes for refinements, and a careful 
choice of the basis functions has to be made to pre-
vent their linear dependence. The so-called general-
ized finite element method (GFEM) [11] uses special 
functions from known analytical solutions in order to 
improve the FEM solution. Duarte et al. [12] pro-
posed FE-based partition of unity with the same sup-
ports as corresponding FE shape functions, which has 
a similar concept to the method proposed here in that 
numerical integrations of shape functions and their 
products can be done by using the finite elements. 
The moving particle finite element method (MPFEM) 
[13] and the reproducing kernel element method 
(RKEM) [14] have been developed to combine the 
strengths of both finite elements and meshless meth-
ods by using the reproducing conditions. The 
MPFEM and the RKEM introduced a concept of 
general shape functions with a high order smoothness. 
Some methods [15, 16] have been proposed to enrich 
the finite element method with meshless methods, 
which have similar features to the present method in 
adding additional nodes without any remeshing proc-
ess. The use of circular supports in these methods [15, 
16] may produce a difficulty in numerical integration 
due to complex intersections of finite elements and 
circular supports. In the present scheme, polygonal 
supports for additional nodes are used to be aligned 
with the finite elements. 

A new method using the moving least square based 
on a ground mesh with triangular or quadrilateral 
elements is proposed in this paper. The previous work 

[17] only considered a convex polygonal support 
domain with quadrilateral elements, but the present 
method makes it possible to solve problems using a 
ground mesh with generally-shaped triangular and 
quadrilateral elements. The finite elements connecting 
primary nodes are constructed as a ground mesh in a 
domain, and secondary nodes can be placed arbitrar-
ily without reconstruction of a mesh. The key idea of 
the present method is that polygonal support domains 
of secondary nodes are defined on the basis of a 
ground mesh to be aligned with integration domains. 
Since most meshless methods do not take into con-
sideration the background mesh in the construction of 
shape functions, an inaccurate result may be obtained 
because of a difficulty in numerical integrations of 
complex functions. The proposed method leads to a 
consistency of numerical integrations by aligning 
support and integration domains, and does not need a 
new ground mesh when nodes are added or removed 
in a domain. As a consequence, the present scheme is 
very useful in controlling errors by adding or remov-
ing nodes in a domain. In addition, a simple technique 
is proposed to apply essential boundary conditions 
directly. Numerical examples of two-dimensional 
solids are presented to demonstrate the efficiency of 
the proposed method. 
 

2. Support and integration domains of a weak 
form 

In the following, support and integration domains 
for the weak form of elastostatic problems are de-
scribed. The equilibrium equations of linear elasticity, 
in a global domain Ω  bounded by Γ , are given by 
 

, 0ij j ibσ + =  in Ω   (1) 
 
where ijσ  is the stress tensor, ib  are the body 
forces, ( ), j

 denotes ( ) / jx∂ ∂ , and a summation 
over a repeated index is implied. The boundary condi-
tions are assumed to be 
 

i iu u=  on uΓ   (2a) 

ij j in tσ =  on tΓ   (2b) 

 
where uΓ  and tΓ  are the global boundaries with 
prescribed displacements and tractions, respectively. 
Using the divergence theorem, the weak form of the 
equilibrium equation is written as 
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,
t

ij i j i i i iv d t v d b v dσ
Ω Γ Ω

Ω = Γ+ Ω∫ ∫ ∫   (3) 

 
where iv  is the test function, and i ij jt nσ=  and jn  
is the outward unit normal to the boundary ∂Ω . To 
obtain the discrete equations from the formulation, 
based on meshless interpolations, the global forms of 
interpolations for displacements can be written as 
 

1

ˆ( ) ( )
N

h I I
i i

I
u uφ

=

= ∑x x   (4) 

 
where ( )Iφ x  is the nodal shape function centered at 
node I . In general, in meshless interpolations, ˆ I

iu  
are fictitious nodal values. 

Let { }IsΩ  be a system of overlapping patches 
which covers the global domain Ω , where I  
( 1,2, , N= L ) indicates a node, and N  is the total 
number of nodes. The sub-domain I

sΩ  is thus called 
the support domain of node I . To perform numerical 
integrations of the weak form, an integration domain 
is required for constructing the system stiffness ma-
trix. Let DΩ  denote an integration domain which is 
not overlapping each other. The system stiffness ma-
trix K  can then be obtained by 
 

,
1

D

D

N

ij i j
D

v dσ
Ω

=

= Ω∑∫K   (5) 

 
where DN  is the number of integration domains. 
Note that the values of shape functions at x  inside 

DΩ  are influenced by a set of nodes in the vicinity of 
x . The finite element method usually performs the 

numerical integration on the basis of support do-
mains; the boundaries of support domains subdivide a 
global domain into integration domains of finite ele-
ments. Most of the meshless methods use background 
cells to integrate the weak form over a domain, in 
which integration domains do not match with the 
boundaries of support domains. The MLPG method 
[5] uses the support domains as integration domains, 
which may be a natural choice (see Fig. 1(c)). Simi-
larly, the present method also uses support domains to 
define integration domains. Fig. 1 shows three meth-
ods used in integrating the weak form. The support 
domains in the FEM do not intersect each other in an 
integration domain or in an element. However, circu-
lar support domains as shown in Fig. 1b intersect each 
other in an integration domain. 
 

   
             (a)                          (b)                            (c) 
 
Fig. 1. Support and integration domains: (a) finite element 
methods, (b) meshless methods with background cells, (c) 
meshless methods with support domains consistent with 
integration domains. 
 

3. Characteristics of moving least square ap-
proximation 

In this section, we review the characteristics of the 
moving least square (MLS) approximation, including 
some difficulties in the connectivity of meshless me-
thods and numerical integrations. The MLS approxi-
mation always preserves the completeness up to the 
order of the basis, and reasonably interpolates the 
distributed nodal information. However, the nodal 
shape functions that arise from the MLS approxima-
tion have a very complex nature. This complexity 
results in difficulties with numerical integrations of a 
weak form. In addition, a definition of influence do-
mains is required to preserve the connectivity of the 
MLS approximation. 

We consider the approximation of a function ( )u x  
in a local region centered at %x  in a domain Ω . The 
moving least-square approximation starts from a local 
approximation in the neighborhood of %x , such as 
 

( , ) ( ) ( )local Tu a= p% %x x x x  ( )B∀ ∈ %x x   (6) 
 
where ( )B %x  is a sphere centered at %x , ( )T =p x  
[ ]1 2( ), ( ), ..., ( )mp p px x x  is a complete monomial 

basis of order m ; and ( )a %x  is a vector containing 
the coefficients ( ), 1, 2, ...,ja j m=%x . The coefficient 
vector ( )a %x  is determined by minimizing a 
weighted discrete 2L -norm, defined as 
 

2

1

ˆ( ) ( ) ( ) ( )
N

I T I
I

I
Y w u

=

⎡ ⎤= −⎣ ⎦∑ p a% % %x x x x  

        [ ] [ ]ˆ ˆ( ) ( ) ( )T
= ⋅ − ⋅ ⋅ ⋅ −P a u W P a u% % %x x x   (7) 

 
where ( )Iw %x  is a weight function defined in a sup-
port domain I

sΩ , with ( ) 0Iw >%x  for all %x  in I
sΩ  

and ( ) 0Iw =%x  at the boundary of I
sΩ , Ix  denotes 

the value of x  at node I , and the matrices P , W  
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and û  are defined as 
 

1

2

( )
( )
...
( )

T

T

T
N N m×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

p
p

P

p

x
x

x

,  

1( ) ... 0
( ) ... ... ...

0 ... ( )N

N N

w

w
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W
%

%

%

x
x

x
,  

1 2ˆ ˆ ˆ ˆ, , ,T Nu u u⎡ ⎤= ⎣ ⎦u L   (8) 

 
For convenience, %x  in the above relations is re-

placed by x , because a local point %x  can be ex-
tended to all points in whole domain. This is the basic 
concept of the “moving” procedure, and we can fi-
nally obtain a global approximation. 

The stationary condition of ( )Y x  with respect to 
the coefficients ( )a x  leads to the following relation: 
 

ˆ( ) ( ) ( )=A a B ux x x   (9) 
 
where the matrices ( )A x  and ( )B x  are given by 
 

1

( ) ( ) ( ) ( )
N

T I I T I

I
w

=

= =∑A P WP p px x x x   (10a) 

1 1( ) ( ) ( ), , ( ) ( )T N Nw w⎡ ⎤= = ⎣ ⎦B P W p pLx x x x x  (10b) 
 
The global approximation ( )hu x  can then be ex-
pressed as 
 

1

ˆ( ) ( )
N

h I I

I
u uφ

=

=∑x x   (11) 
 
where the nodal shape functions are given by 
 

1( ) ( ) ( ) ( )I Tφ −=p A Bx x x x   (12) 
 

In the traditional FEM, the nodal shape functions 
have a value of unity at the respective nodes. How-
ever, in the MLS approximation, ˆ Iu  are fictitious, 
and are not exactly equal to the nodal values of field 
variables. The MLS interpolation is well defined only 
when the matrix A  in Eq. (10) is non-singular. A 
necessary condition for a well-defined MLS interpo-
lation is that at least m  weight functions are non-
zero for each sample point ∈Ωx . Consequently, the 
influence domains of non-uniform node distributions 
should be defined carefully to prevent from ill-
conditioning of the construction of shape functions 
based on the MLS approximation. As a result, mesh-

less connectivity is required even though the nodal 
connectivity as in the FEM is not needed in the MLS 
approximation. To preserve the regularity of MLS 
shape functions, the support domains should overlap 
at least three times in two dimensions with the linear 
basis. A careful choice of support domains for a non-
uniform node distribution is required to guarantee the 
regularity of MLS shape functions. 

We can obtain an explicit form of nodal shape 
functions, with a linear basis, in a two-dimensional 
problem, in order to better understand the characteris-
tics of nodal shape functions: 

[ ]0 1 2

1
( , ) ( , ) ( , ), ( , ), ( , )I Ix y w x y c x y c x y c x y x

y
φ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (13) 

where the coefficients 0 ( , )c x y , 1( , )c x y  and 
2 ( , )c x y  are given by Atluri et al. [18]. In general, the 

coefficients in Eq. (13) are not of a single type of 
functions, because the influence domains of neighbor-
ing nodes related to the support domains I

sΩ  make 
complex intersections due to crossing of the bounda-
ries of influence domains. Consequently, the nodal 
shape functions ( )Iφ x  consist of many different 
forms of rational functions in the support domains 

I
sΩ . It seems to be difficult to integrate these kinds of 

complex functions, by using a simple Gaussian quad-
rature rule, and this causes a difficulty in numerical 
integrations of a weak form. 
 
4. Construction of polynomial supports and 

weight functions 
This section first describes the procedure for con-

structing polygonal support domains on the basis of 
triangular and quadrilateral finite elements, and corre-
sponding weight functions. Later, some advantages of 
the present method in the treatment of essential  

 

  
                              (a)                                   (b) 
 
Fig. 2. Schematic representations of supports of randomly 
distributed nodes: (a) meshless methods with circular support 
domains, (b) the present method with polygonal support 
domains. 
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boundary conditions are pointed out. A ground mesh 
is constructed by connecting primary nodes, and the 
support domains of secondary nodes distributed arbi-
trarily in a domain are defined on the basis of the 
ground mesh. The proposed method always guaran-
tees the regularity of MLS shape functions and the 
consistency of support and integration domains. 

 
4.1 Polygonal support domains and weight functions 

As explained in the previous section, the definition 
of support domains for meshless connectivity and the 
complex interaction of support domains in an integra-
tion domain are difficulties in meshless methods. In 
this study, the concept of a ground mesh is introduced 
to preserve the regularity of MLS shape functions, 
and to prevent the crossing of the boundaries of sup-
port domains in an integration domain. The polygonal 
support domains defined by a ground mesh connect-
ing anchor or primary nodes are used for the support 
domains of nodes, called the secondary nodes, added 
or removed in a domain. As a result, no additional 
mesh is required for secondary nodes, which makes it 
possible to extend the meshless concept to be a useful 
tool for error controls and adaptive calculations. Fig. 
2 shows two types of support domains: circular sup-
port domains and polygonal support domains defined 
by the primary nodes. Since the types of shape func-
tions may change across the boundaries of support 
domains, the method shown in Fig. 2(a) may lead to a 
complexity in the weak form, for a non-uniform node 
distribution, due to the intersections of support do-
mains. However, the present method in Fig. 2(b) uses 
simple polygonal intersections of support domains. 
As a result, shape functions in a polygonal intersec-
tion have a single type of rational function, because of 
the alignment of the boundaries of support domains. 
The support and integration domains of secondary 
nodes are defined on the basis of a ground mesh, and 
there is no modification of the ground mesh by add-
ing or removing secondary nodes in a domain. Hence, 
the method presented here has an advantage in that 
one does not need to modify the mesh in adaptive 
computations. 

In the present scheme, secondary nodes can be 
placed at arbitrary locations in the domain of interest, 
in order to improve the deformations. Secondary 
nodes placed randomly in the domain take the support 
domains to be the supports of the nearest primary or 
anchor nodes. Fig. 3 illustrates how to choose primary  

  

/ /

Primary node
Secondary node

/

 
 
Fig. 3. Polygonal support domains for primary and secondary 
nodes: solid rectangles are the primary nodes and solid circles 
are the secondary nodes. 
 

   
                  (a)                                             (b) 
 
Fig. 4. Distances from the position x  to the segments k : 
(a) a ground mesh with triangular elements, (b) a ground 
mesh with quadrilateral elements. 

 
nodes that would be anchors for secondary nodes. 
The support domain of a primary node becomes a 
polygon consisting of triangles or rectangles in two 
dimensions. Therefore, it is very easy to find the sup-
port domains of secondary nodes once a ground mesh 
is constructed by using primary nodes. It should be 
noted that the polygonal support domains with trian-
gular or quadrilateral elements can have convex and 
concave shapes. 

We denote by I  the primary node and by i  the 
secondary nodes, related to the primary node I . 
Weight functions in the MLS approximation, which 
ultimately govern the shape functions (see Eqs. (10) 
and (12)), should be defined appropriately. It is favor-
able that there is no discontinuity of the derivatives of 
weight functions in a ground mesh. Moreover, it is 
desirable that the maximum values of weight func-
tions are located at nodal positions. Weight functions 
of primary nodes are constructed by a set of functions 
which are appropriately zero along a given boundary 
of polygonal support domains. On a convex domain, 
a function which is zero along the boundary can be 
defined by the triangular simplex [19], in which the 
partition of unity was used to construct shape func-
tions for polygonal domains with interior nodes. The 
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product of boundary functions ( )I
kf x  for triangles 

or rectangles k  consisting a convex or concave 
polygonal support domain is used to build weight 
functions which vanish at the boundary of the support 
domain, i.e., 
 

( ) ( )
1

sn
I

I k
k

w f
=

=∏x x  on I
sΩ   (14) 

with 

( ) ( ) ( )1 I
kqI I

k kf q e −= xx x , ( ) ( )
( )

kI
k I

k

d
q

d
=

x
x

x
  (15) 

 
where sn  is the number of edge segments of a poly-
gon I

sΩ , and ( )kd x  are the nearest distances from 
the position x  to the segments k . Fig.4 illustrates 
the distances to define the boundary functions ( )I

kf x . 
The definition of the boundary functions ( )I

kf x  in 
Eq. (15) is similar to the cloud boundary function by 
Duarte et al. [12]. Fig. 5 plots the boundary functions 

( )I
kf x  which have the maximum at ( ) 1I

kq =x . As a 
consequence, the weight functions at the nodes Ix  
have the maximum, ( ) 1I

Iw =x , and zero at the 
boundaries of polygonal support domains. Note that 
the proposed procedure can be applied to both a con-
vex and a concave polygonal support. The boundary 
functions increase 0 to 1 as the position x  moves 
from the boundary of a polygon or a support domain 
to the nodal position Ix . As a result, the product of 
the boundary functions constructs a smooth weight 
function of the node I  with zero value at the bound-
ary of a polygonal support domain I

sΩ . 
We now discuss the construction of weight func-

tions of secondary nodes. Weight functions of secon-
dary nodes should be zero at the boundaries of po-
lygonal support domains of primary nodes, because 
the support domains of secondary nodes are those of 
primary nodes. For this purpose, we take weight func-
tions of secondary nodes: 

 

 
 
Fig. 5. Boundary functions ( )kf x  as a function of ( )kq x . 

( ) ( )
1

sn
i

i k
k

w f
=

=∏x x  on I
sΩ   (16) 

with 

( ) ( ) ( )1 i
kqi i

k kf q e −= xx x , ( ) ( )
( )

ki
k i

k

d
q

d
=

x
x

x
  (17) 

 

 
                         (a)                                            (b) 
 
Fig. 6. Primary and secondary nodes in polygonal domains: 
(a) a triangular ground mesh, (b) a quadrilateral ground mesh. 

 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Fig. 7. Weight (left) and shape (right) functions of the pri-
mary and secondary nodes in polygonal support domains of 
triangular and quadrilateral ground meshes; (a) primary node 
I=6, (b) secondary node i=1, (c) primary node I=9, (d) secon-
dary node i=4. 
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Fig. 8. Modification of anchor nodes for secondary nodes 
near by primary nodes prescribed essential boundary condi-
tions. 

 
It should be noted that the values of weight func-

tions in Eq. (16) are zero at the boundary of the sup-
port domains I i

s sΩ = Ω . The location of the maxi-
mum of weight functions ( )iw x  is the nodal posi-
tion ix , and its value is 1. The derivatives of weight 
functions across the boundaries of the support do-
mains are not continuous because the derivatives of 
the boundary functions are not zero on the boundaries. 
Thus, the stresses and strains across inter-element 
boundaries of a ground mesh are not continuous. 

Fig. 6 shows secondary nodes within triangular and 
quadrilateral ground meshes constructed by connect-
ing primary nodes. The weight and shape functions of 
primary and secondary nodes are plotted in Fig. 7. In 
these figures, weight functions are zero on the boun-
daries of polygonal support domains. Note that the 
weight functions of secondary nodes have skewed 
forms with the maximum values at ix . The shape 
functions of primary and secondary nodes depend on 
the number of nodes in the support domains and their 
locations. The shape functions of primary nodes are 
different from those of finite elements when secon-
dary nodes exist in the support domains of primary 
nodes. It should be emphasized that the shape func-
tions of primary nodes on a triangular ground mesh 
become the finite element shape functions unless 
secondary nodes are involved in the MLS approxima-
tion. 

Again, emphasis is placed on the fact that the shape 
functions in the present method have a single form of 
rational functions all over the elements in a ground 
mesh, because there is no crossing of the boundaries 
of the support domains. In summary, the secondary 
nodes can be added at arbitrary positions in a domain, 
after the initial polygonal support domains are con-
structed from a ground mesh, and errors in numerical 
results can be controlled by adding or removing sec-
ondary nodes in a domain. Hence, to start with, only a 
simple ground mesh may be used, and later, a random 
pattern of secondary nodes may be introduced, in an 
adaptive fashion to control the error of numerical  

   
                         (a)                                        (b) 
 
Fig. 9. Integration domains: (a) background integration cells, 
(b) a ground mesh. 
 
solutions. 

 
4.2 Essential boundary conditions 

One major difficulty in meshless methods is con-
sidered to be the imposition of essential boundary 
conditions, because, in general, approximation func-
tions do not satisfy the Kronecker-delta condition, 

( )I
J IJφ δ=x . Most of the meshless methods have 

used Lagrange multipliers or penalty methods to im-
pose essential boundary conditions. In some cases, 
meshless interpolations and FE shape functions have 
been combined, leading to a complex interface ele-
ment in the regions of intersection of FE and mesh-
less shape functions [20]. Similar to the conventional 
meshless methods, the present method also requires 
one of these techniques to impose essential boundary 
conditions because primary nodes are multiply over-
laid by the support domains of the associated secon-
dary nodes. An important feature is that primary 
nodes not associated with secondary nodes have the 
Kronecker-delta condition. Therefore, we can impose 
essential boundary conditions directly by changing 
the anchor nodes of secondary nodes related to pri-
mary nodes to impose essential boundary conditions. 
Fig. 8 illustrates the secondary nodes i , j  and k  
related to the primary nodes I  and J  on the global 
boundary imposing essential boundary conditions. In 
order to preserve the Kronecker-delta property on the 
primary nodes I  and J , the secondary nodes i , 
j  and k  do not take these primary nodes as anchor 

nodes. Through this simple modification, shape func-
tions on the global boundaries become the finite ele-
ment shape functions because the influence domains 
of secondary nodes do not overlay the boundaries 
connecting these primary nodes. As a result, we can 
impose essential boundary conditions directly at the 
primary nodes I  and J . 
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4.3 Numerical integrations 

To evaluate the stiffness matrix from a weak form, 
it is necessary to use a numerical quadrature since 
analytical integration is all but impossible in general. 
The numerical integration of a weak form usually 
plays an important role in the convergence of numeri-
cal solutions in meshless methods. Fig. 9 shows that 
the schematic features of two integration methods in 
meshless methods. The first method, using a back-
ground mesh, has been used in most of the meshless 
methods. Dolbow and Belytschko [21] have already 
indicated that the integration using the background 
mesh is not adequate, to accurately integrate the terms 
in the stiffness matrix, when irregularly distributed 
nodes are used. They presented a method to reduce 
errors in numerical integrations, by making the inte-
gration cell to be aligned with the boundaries of sup-
port domains. As explained in the previous section, 
the present method uses the intersections of the sup-
ports as the integration domains to obtain a consistent 
numerical integration for the stiffness matrix. As a 
result, shape functions inside an integration domain 
become a single type of rational function. 

In this study, a symmetric quadrature [22] is used 
to numerically evaluate the integrals in a weak form. 
Since shape functions inside an integration domain 
are rational functions in the present method, the 
symmetric quadrature may not be adequate to evalu-
ate integrals properly. However, the accuracy of nu-
merical integrations may be controlled by the number 
of integration points, taking a proper level of polyno-
mials as an approximation for these rational functions. 
In general, the more secondary nodes are involved in 
the support domains, the more integration points are 
required. Development of an efficient integration rule 
for rational functions is still an open question, to im-
prove the performance of this method while using 
only a small number of integration points. 
 

5. Numerical examples 

In this section, numerical results of linear elastic 
problems, specifically a cantilever beam and a center 
cracked plate, are presented to illustrate the effective-
ness of the present method. Fig. 10 describes the nu-
merical examples. Young’s modulus and Poisson’s 
ratio are 101.0 10E = ×  and 0.25ν = , respectively. 
We use the displacement and energy norms defined 
as 

 
(a) 

 

x

yσ0

σ0

h

crack
2b1

2b2

J-integral 
domain

2a

w

 
(b) 

 
Fig. 10. Geometric descriptions of numerical examples; (a) a 
plate with a circular hole, (b) a center cracked plate in tension. 
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The relative errors for u  and ε  are defined as 
 

num exact

u exact
r

−
=

u u

u
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num exact

e exact
r

−
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ε ε

ε
  (19b) 

 
The linear basis in the MLS approximation is used in 
the numerical examples. To verify the present scheme, 
secondary nodes are placed randomly in a domain. 

 
5.1 Infinite plate with a circular hole 

We first consider an infinite plate with a circular 
hole of radius a . The plate is subjected to a uniform 
tension, 9

0 1.0 10σ = × , in the x -direction, at infinity 
as shown in Fig. 10a. The exact solutions for stresses 
are 
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(d) 

 
Fig. 11. Stress 11σ  in a plate using ground meshes with 
regularly- and irregularly-shaped quadrilateral elements: (a) 0 
secondary nodes, (b) 100 secondary nodes, (c) 150 secondary 
nodes, (d) 200 secondary nodes. 
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where ( ),r θ  are the polar coordinates, and θ  is 
measured from the positive x -axis. The correspond-
ing displacements in the plane stress are given by 
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Fig. 12. Stress 11σ  in a plate using ground meshes with 
regularly- and irregularly-shaped triangular elements: (a) 0 
secondary nodes, (b) 100 secondary nodes, (c) 150 secondary 
nodes, (d) 200 secondary nodes. 

 

 

 
 
Fig. 13. Relative errors of displacement and energy for a 
plate with a circular hole problem. 

 
Due to symmetry, only a part, 0 4r≤ ≤ , of the up-

per half of the plate is modeled as shown in Fig. 10(a). 
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Symmetry conditions are imposed on the bottom edge, 
i.e., 2 0u = , 1 0t =  on the bottom edge, and the inner 
boundary at 1.0a =  is traction free. The traction 
boundary conditions, as given by the exact solutions, 
are imposed on the outer boundary at 4r = . First, 
ground meshes with regularly and irregularly shaped 
quadrilateral elements are considered. The ground 
mesh is constructed by connecting the primary nodes. 
Particularly, enrichment of solutions using an irregu-
lar ground mesh will show the possibility of the pre-
sent method to solve a problem using generally 
shaped elements. We distribute 100, 150 and 200 
secondary nodes randomly in the domain through 
generating random numbers. We use 25 integration 
points in an integration domain for obtaining an accu-
rate numerical integration of the products of MLS 
shape functions. The stress distributions are plotted in 
Fig. 11. The stress changes to a better one as the sec-
ondary nodes are added in the domain. Note that the 
stresses are discontinuous across the boundaries of the 
ground mesh. Secondly, we solve the problem using 
ground meshes with regularly and irregularly shaped 
triangular elements. Fig. 12 show the stress distribu-
tions when 100, 150 and 200 secondary nodes are 
placed randomly in the domain. Similar to the results 
for the quadrilateral elements, better results can be 
obtained by adding secondary nodes in the domain. 
The stresses are not continuous across the boundaries 
of the ground mesh. The relative errors of displace-
ment and energy decrease by adding secondary nodes 
in the domain, as shown in Fig. 13. In particular, sec-
ondary nodes added on irregularly shaped ground 
meshes improve the deformations and stresses in 
numerical results. The numerical results show a good 
performance even though secondary nodes are dis-
tributed randomly in the domain. 

 
5.2 A center cracked plate in tension 

Next, we consider a center cracked plate in tension. 
Due to symmetry, the right half as shown in Fig. 10b 
is modeled under plane stress condition. The size of 
model is 4.0h w= = , and the crack length is 

2.0a = . The applied stress 0σ  at the top and the 
bottom is 85.0 10×  in this example. The symmetric 
condition is applied on the left side. Of primary im-
portance in a crack problem is the determination of 
the parameters which characterize the singularity of 
the stress fields in the vicinity of a crack tip. The 
mode I  stress intensity factor IK , as a characteriz-

ing parameter for the crack, is computed from the 
J -integral by domain integration [23]. The size of 
the J -integral domain is chosen as 1 22 2b b× =  
2.0 2.0× . The stress intensity factor IK  is evaluated 
by IK JE=  for plane stress, and the target solution 
for this problem is 0/ 1.325IK K =  where 0K =  

0 aσ π  [24]. In this numerical example, we use 
quadrilateral and triangular ground meshes, and 25, 
50 and 100 secondary nodes are added randomly near 
the crack tip. The J -integral domain is indicated in 
Fig. 10b. The stress 22σ  at the crack tip is higher as 
the number of secondary nodes near the crack tip 
increases. By adding secondary nodes on the crack 
lines, improved deformations near the crack tip are 
obtained as shown in Figs. 14 and 15. In particular, 
the crack line is not straight when the secondary 
nodes are involved in the deformations near the crack 
tip. In Fig. 16, the errors in the stress intensity factors 
evaluated from J -integral are plotted against the 
number of secondary nodes. 

The stress intensity factor approaches the target so-
lution as the number of secondary nodes in the do-
main increases. Consequently, a better solution can be 
obtained by adding secondary nodes in the domain of 
interest. 

 

    
                           (a)                                    (b) 
 

    
                           (c)                                    (d) 
 
Fig. 14. Stress 22σ  in a center cracked plate using a ground 
mesh with quadrilateral elements: (a) 0 secondary nodes, (b) 
25 secondary nodes, (c) 50 secondary nodes, (d) 100 secon-
dary nodes. 
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                           (a)                                    (b) 
 

    
                           (a)                                    (b) 
 
Fig. 15. Stress 22σ  in a center cracked plate using a ground 
mesh with triangular elements: (a) 0 secondary nodes, (b) 25 
secondary nodes, (c) 50 secondary nodes, (d) 100 secondary 
nodes. 

 

 
 
Fig. 16. Errors in the evaluation of stress intensity factor, 
versus the number of secondary nodes for a center cracked 
plate problem. 
 

6. Concluding remarks 

A new adaptive method has been presented to en-
rich the finite element solutions with the meshless 
concept. Arbitrary placement of secondary nodes 
makes the method in many respects closer to mesh-
less methods. We present a new method to define the 
weight functions of primary and secondary nodes 
when polygonal supports are convex and concave 
domains. Consequently, an important aspect of the 
present scheme is the capability for solving problems 

using ground meshes with generally shaped triangular 
and quadrilateral elements, which allows an efficient 
adaptive calculation by adding secondary nodes in a 
domain. The approach presented here alleviates a 
major difficulty in meshless connectivity, complex 
intersections of support domains, and the definition of 
integration domains. Moreover, the present approach 
can directly take care of essential boundary conditions. 
A clear advantage of the adaptive scheme in this pa-
per is that secondary nodes can be placed arbitrarily 
in the domain of interest, without the burdensome 
task of constructing a new mesh to enrich the solution. 
Therefore, the present method can be a useful tool for 
error controls and adaptive calculations in the field of 
computational mechanics. 
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